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Abstract—Reconstruction of heard speech spectrograms from
neural data is important in areas like auditory attention decoding
and communicating with locked-in patients. For this problem, we
receive the neural responses from multiple channels of electroen-
cephalogram (EEG) recordings over time as measurements and
use pre-learned spectro-temporal receptive fields (STRFs) as the
sensing matrix. From this data, we perform a sparse reconstruc-
tion of the original heard speech power mel-spectrogram, which
outperforms dense reconstruction due to the inherent sparsity
in speech spectrograms. We show that the projected subgradient
method produces the most accurate reconstructions, as measured
by the error in the objective function for a single time frame,
the l2-error of a single time frame, and the Frobenius norm of
the error in the final reconstruction.

Index Terms—stimulus reconstruction, EEG, spectrogram,
STRF, sparsity

I. INTRODUCTION

The early auditory system is responsible for basic process-
ing of speech and other sounds, including a decomposition
of the heard sound into basic time-frequency representations,
before higher level phonetic and lexical processing occurs
[1]. This initial decomposition yields a faithful representation
of the spectro-temporal properties of the perceived audio
expressed in auditory cortex [2]. It has also been shown that
it is possible to reconstruct a time-frequency representation
of heard speech from neural responses, especially ones that
are recorded from areas in and around auditory cortex, with
improved results from invasive electrocorticography (ECoG)
recordings compared to non-invasive electroencephalography
(EEG) recordings due to the improved signal-to-noise ratio
[3]. Reconstructing speech from auditory cortex is a funda-
mental problem in the field of auditory attention decoding
and has further clinical applications in patients with locked-
in syndrome who are otherwise unable to communicate with
the outside world. Typically, heard speech reconstruction is
performed with the objective of minimizing the mean-square
error between the original spectrogram and the recovered
spectrogram [4]. However, based on our knowledge about the
basic structural properties of speech spectrograms, we can
expect that each time frame of a speech spectrogram will be
sparse over the frequency bins [5] [6]. Therefore, we can take
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advantage of this inherent structure of speech spectrograms by
utilizing methods that perform sparse reconstruction of speech
spectrograms to improve the quality of our results.

II. TECHNICAL APPROACH

A. Data Collection

Speech from two co-located talkers, one male and one
female, was presented to the subjects in a quiet, electrically-
shielded, audiometric booth. The audio was presented from a
single loudspeaker directly in front of the subject, with each
trial lasting approximately 1 minute. The stimuli consisted of
passages from the Connected Speech Test (CST) database,
used for its ability to provide an objective measure of intelli-
gibility. Each passage was heard only once by the subject.

The data used here were collected from a single human
subject (age 23, male, right-handed). The subject gave written,
informed consent to participate in the experiment, in a proto-
col approved by the Columbia University Human Research
Protection Office and Institutional Review Board. The instru-
mentation used for collection included a wet-electrode, 64-
channel g.tec EEG cap with a sampling rate of 2400 Hz, and
the data were recorded using the g.Recorder data acquisition
software. Reference electrodes were placed on both ears. Prior
to analysis, all EEG data were down-sampled to 100 Hz,
including the application of an anti-aliasing low-pass filter
with a cutoff frequency of 50 Hz. The EEG data were further
low-passed filtered with a cutoff frequency of 8 Hz before
reconstruction was attempted because of prior work showing
that frequencies below 8 Hz are linearly related to the stimulus
power [2]. The auditory stimuli were converted to power mel-
spectrograms using the LibROSA package for Python, which
performed a short-time Fourier transform with a window size
of 2048 samples and a hop length of 240 samples (10 ms) to
line up with the EEG data down-sampled to 100 Hz [7].

B. Data Properties and Assumptions

Based on our knowledge of the cortical tracking of the
time-frequency representation of heard audio, we can utilize
the specific properties of the time-frequency representation of
speech to improve upon existing methods of heard speech



reconstruction. Most importantly, the time-frequency represen-
tation of speech is sparse over frequency bands due to the
harmonic properties of the vocal chord and is also sparse over
time, but only for specific frequency bands which can further
depend on the speaker [5] [6]. For this reason, we focus on
the inherent and reliable sparsity over frequency. Furthermore,
an important assumption we make is that the heard speech
spectrogram is linearly related to the neural responses. This
is certainly not a reliable assumption if the objective is to
perfectly reconstruct the heard speech spectrogram; however,
linear approximations of the heard speech spectrogram from
neural recordings have been shown to be sufficient for a variety
of tasks for which stimulus reconstruction is useful, including
auditory attention decoding [8] [9]. Therefore, we hypothesize
that our results will be a more faithful reconstruction of the
heard speech spectrogram; however, we do not expect our
results to produce intelligible speech.

C. Problem Setup

For this problem, we receive the neural responses from N =
64 electrode channels of EEG recordings over time, T , as
measurements, Y ∈ RN×T . From these measurements, we
aim to reconstruct the power mel-spectrogram, S0 ∈ RF×T ,
which consists of T column vectors st ∈ RF×1 where F = 64
for the frequency bands in the spectrogram. The spectrogram
is mapped to each neural response channel, n, through a 1D-
convolution over time with a spectro-temporal receptive field
(STRF), An ∈ RF×(τ+1) where τ is the number of time-lags
over which the convolution is performed [10]. There are τ +1
columns in the STRF to account for the zero-lag column. The
time-lags, τ , are a chosen parameter of the model and typically
go up to 170-250 ms for reconstructions from basic stimulus
encoding in primary auditory cortex [4] [8]. We chose τ = 350
ms to make sure we capture more than enough information.
Therefore, to map the spectrogram to all N channels of the
EEG responses, N STRFs are needed.

yn = An ∗ S0, n = 1, 2, ..., N (1)

In order to fit this problem into sparse recovery frameworks,
we reformulate the convolution of each 2D STRF, An with the
spectrogram, S0, as a matrix multiplication by flattening each
STRF into row vectors, an ∈ R1×F (τ+1), and augmenting the
spectrogram with lagged versions of itself, St ∈ RF×T , to
form a lagged-spectrogram matrix, X ∈ RF (τ+1)×T .

St =

 | | | | |
0 0 . . . s1 s2 . . . sT−t
| | | | |



A =


— a1 —
— a2 —

...
— an —

 , X =


— S0 —
— S1 —

...
— Sτ —


The problem formulation can subsequently be treated as a

simple matrix multiplication:

Y = AX (2)

Following this reformulation, we treat each time frame of
the neural responses, yt ∈ RN×1, and each time frame of the
lagged-spectrogram matrix, xt ∈ RF (τ+1)×1 as measurements
and reconstructions respectively, independent from all other
time frames, such that

yt = Axt, t = 1, 2, ..., T (3)

This permits the straightforward use of the following effi-
cient sparse recovery algorithms.

D. Algorithms

We utilized four algorithms for performing sparse recovery
of the heard speech spectrogram: the projected subgradient
method, the accelerated proximal gradient method, the aug-
mented Lagrangian method, and the Frank-Wolfe/conditional
gradient method. In this section, the time frame information
of each measurement and reconstruction is omitted in favor of
iteration information. In general, these algorithms are applied
in the same way to each time frame.

1) Projected Subgradient Method: The projected subgradi-
ent method is a constrained version of the subgradient method.
It involves alternating between taking subgradient steps, which
move in the direction −sign(x̂) for an `1 norm objective, and
orthogonal projections onto the feasible set {x̂|Ax̂ = y} de-
fined by the constraint. Therefore, each projected subgradient
step is defined as

x̂k+1 = PC [x̂k − tkgk], gk ∈ ∂‖ · ‖1(x̂k) (4)

where tk is the step size at iteration k and gk is the subgradient
of the `1 norm of x̂ at iteration k.

2) Accelerated Proximal Gradient Method: The accelerated
proximal gradient method is an unconstrained method that
involves the same objective as the proximal gradient method
with a modification to accelerate convergence. Specifically, for
this problem, we seek to find

argmin
x̂

1

2
‖Ax̂− y‖22 + λ‖x̂‖1

which normally involves taking a gradient step to minimize
the `2 norm term followed by a soft-threshold as the proximal
operator of the `1 norm of x̂. We can speed up convergence to
its theoretical maximum by using the following updates until
x̂ converges:

wk+1 = pk −
1

L
A∗(Apk − y) (5)

x̂k+1 = soft(wk+1, λ/L) (6)

tk+1 =
1 +

√
1 + 4t2k
2

, βk+1 =
tk − 1

tk+1
(7)

pk+1 = x̂k+1 + βk+1(x̂k+1 − x̂k) (8)

where L is the Lipschitz constant which is computed as the
largest eigenvalue of A∗A.



3) Augmented Lagrangian Method: The augmented La-
grangian method is an unconstrained optimization method that
is similar to penalty methods but adds an additional penalty
term designed to mimic a Lagrange multiplier. Here we seek
to minimize the `1 norm of x̂ subject to the constraint Ax̂ = y.
Rather than enforcing the constraint, we add the penalty term
µ

2
‖Ax̂− y‖22 and the Lagrangian penalty 〈λ,Ax̂− y〉 so our

overall objective is

Lµ(x̂, λ) = ‖x̂‖1 +
µ

2
‖Ax̂− y‖22 + 〈λ,Ax̂− y〉. (9)

Therefore, the optimization strategy involves first taking a
proximal gradient step with respect to Lµ(x̂, λ) followed by
a subgradient step of the dual function, yielding

x̂k+1 ∈ argmin
x̂

Lµ(x̂, λ) (10)

λk+1 = λk + µ(Ax̂k+1 − y) (11)

4) Frank-Wolfe Method: The Frank-Wolfe method, also
known as the conditional gradient algorithm, is a constrained
optimization method that is scalable enough to solve extremely
large sparse problems due to the property that each iteration
solves a subproblem that is simpler and easier to compute than
the proximal operator. Here we seek to do the following

minimize
1

2
‖Ax̂− y‖22

subject to ‖x̂‖1 ≤ τ
(12)

Where τ is the maximum size of `1 ball on which x̂ exists. We
can find the x̂ that satisfies this by performing the following
updates until x̂ converges:

rk = Ax̂k − y (13)

ik = arg maxi|a∗i rk| (14)

σ = sign(a∗ikrk) (15)

vk = −τσeik (16)

x̂k+1 =
k

k + 2
x̂k +

2

2 + k
vk (17)

Where ai is the ith column of A and ei ∈ RF is the standard
basis vector.

III. EXPERIMENTS

A. Methods

We have modeled our problem formulation as that of sparse
reconstruction. We reconstruct X by performing a column-
wise reconstruction using the columns of Y . This boils down
the problem into T independent subproblems, where each
subproblem reconstructs a single time step.

After obtaining the data, we run the sparse reconstruction
algorithms mentioned in Section II.D for a single time step,
tune the respective parameters, and compare the results. Fol-
lowing this, we run the best algorithm (w.r.t. recovery error)
on a range of time steps and further fine-tune to improve this
error. Finally, we run this tuned algorithm over all time steps to

Fig. 1. Spectrum amplitudes for the original, dense reconstruction, and
reconstructions from all sparse methods at t=4.00 sec.

obtain the reconstructed spectrogram, and compare it visually
and quantitatively with the original spectrogram. Note that in
this sparse reconstruction, due to the intractability of enforcing
non-negativity of reconstructed values (power spectrogram
amplitudes are positive), we have simply thresholded the
reconstructions.

B. Results

Table I shows the error in objective and the recovery error
for a single time step (t=4.00 sec) for all the algorithms
mentioned. We also have dense reconstruction as a benchmark
for comparison. The reconstructed columns are shown in Fig.
1. We see that overall, the projected subgradient method
outperforms other sparse methods, and only the projected
subgradient and augmented Lagrangian methods outperform
dense reconstruction.

Table II shows the recovery error for the projected subgradi-
ent method and dense method over all time steps both before
and after the reconstructed spectrogram has been realigned

TABLE I
ERRORS FOR EACH SPARSE RECOVERY ALGORITHM (@ T=400)

Sparse Recovery Algorithms
Proj

Subgrad APG ALM FW Dense

Objective
Error 2.32e-13 2.99e-2 2.01e-2 3.34e-1 1.55e-14

Lagged
Recovery

Error
1281.8 1649.8 1282.2 2267.7 1582.3

TABLE II
FINAL RECONSTRUCTION ERRORS (FROBENIUS NORM)

Projected Subgradient Dense
Lagged Recovery

Error 74401.9 74511.6

Delagged Recovery
Error (mean) 9748.0 10880.2

Delagged Recovery
Error (median) 10456.5 11036.5

Delagged Recovery
Error (sparse) 13793.9 10939.6



Fig. 2. Full lagged spectrograms from the original, the projected subgradient
reconstruction, and the dense reconstruction.

in time and combined using three different methods: mean,
median, sparse. The mean combination method involves taking
the mean over all realigned spectrograms. The median com-
bination method involves taking the median over all realigned
spectrograms. The sparse combination method involves taking
the mean over all realigned spectrograms and zeroing out any
TF bins that were zero in any of the lagged spectrograms.
Fig. 2 visualizes the recovered lagged spectrograms. Fig. 3
visualizes the recovered spectrograms delagged using the mean
method. Fig. 4 visualizes the most relevant frequency bands
recovered spectrograms delagged using the mean method. Fi-
nally, Fig. 5 visualizes a representative, five-second section of
the recovered spectrograms delagged using the mean method
for closer inspection and comparison.

IV. DISCUSSION

For a single time step, the projected subgradient method
outperforms all the other methods. Although it does have a
slightly larger objective error than dense reconstruction, it
performs a much more accurate recovery, and the recovery
error, which is a more important metric of evaluation, is
smaller. In general, for our problem formulation, the objective
error is more of a guide to monitor convergence of the
algorithm, whereas the actual efficacy of each algorithm is
judged by how closely the recovered spectrogram resembles
the original one. This is most-clearly depicted by the fact that
the dense reconstruction has a low objective error; however,
the reconstructed column does not appear similar to the actual
spectrogram column. In fact, this is one of our biggest moti-
vations for exploring sparse methods in this problem setting.

The augmented Lagrangian Method comes as a close sec-
ond, producing a similar recovery error, which is again much

Fig. 3. Delagged spectrograms (mean method) from the original, the projected
subgradient reconstruction, and the dense reconstruction.

Fig. 4. Delagged spectrograms (mean method) from the original, the projected
subgradient reconstruction, and the dense reconstruction in the frequency
bands containing most of the power.



Fig. 5. A representative, five-second (t=45-50 sec) section of the original,
projected subgradient reconstruction, and dense reconstruction spectrograms
delagged using the mean method.

better than that of the dense reconstruction. However, it has a
much worse objective value and takes longer to converge. The
accelerated proximal gradient and Frank-Wolfe/conditional
gradient methods perform relatively poorly; we do get a
reconstruction somewhat similar to the dense one using APG,
but the reconstruction using Frank-Wolfe is too sparse for it to
be of any use. Even though the algorithms produce a decent
value of the objective error, we reject these two methods.

After running the projected subgradient algorithm for the
entire time duration, we see on comparison that a lot of
the features of the original lagged spectrogram have been
retained in the sparse reconstruction. We perform delagging
and combination of the constituent spectrogram blocks using
various methods (mean, median, sparse) and find out that
combination using mean performs the best. The reasoning
behind doing this is that data redundancy has an averaging
effect on combination and yields better results than considering
only the top block of rows of the lagged reconstruction. We
see the reconstruction to be much closer to the original than
the dense one. It does lose out on the higher frequency features
however, since they have relatively less power and are zeroed
out in a sparse reconstruction. However, that is a relatively
benign drawback, since most of the information content in
speech is present in the lower frequencies.

Through analysis of the five-second section of the spec-
trograms, seen in Fig. 5, we can interpret particular reasons
why the projected subgradient reconstruction performs bet-
ter than the dense reconstruction. First, we see that sparse
reconstruction is better at modeling very short periods of

silence, which are common in between words and in plosive
phonemes. This can be seen in Fig. 5 towards the end of the
45th second. Furthermore, we see that sparse reconstruction is
better at modeling fast changes in regions of the spectrogram
with high power, as seen in Fig. 5 towards the end of the
47th second. In contrast, the dense reconstruction appears to
smear these sections more, making them last longer than they
should. Finally, we find that sparse reconstruction is somewhat
better at matching the amplitudes of the spectrogram, as
can be discerned from the range of values present in each
spectrogram.

A. Future Directions

We noted in Section III.A that none of our sparse recon-
struction algorithms enforce non-negativity of the elements of
reconstruction, and thus, we manually enforce it by threshold-
ing the output. This might deal a severe blow to the objective
and recovery errors, since our algorithms did no such effort
to enforce non-negativity and sought to find an optimal sparse
solution while allowing elements to be negative. This is the
most significant shortcoming of the aforementioned methods,
and the intractability of enforcing an extra constraint in these
motivates us to look towards better methods.

Future work upon this would build on the idea of enforcing
multiple constraints on the same variable of optimization.
This can be done by using the Alternating Direction Method
of Multipliers (ADMM) with the splitting trick, where we
enforce the constraints in a sum form on different variables,
and externally enforce the constraint for all these variables to
be equal to each other and to x̂. In fact, the ADMM framework
can even be used to reconstruct the whole spectrogram at once,
instead of dividing into subproblems for each time step. This
can be done by considering each column to be an independent
separable variable in ADMM, with similar constraints and
updates for all of them. This would complicate the updates
and each iteration would have number of updates ∼2t and
might lower the efficiency and convergence rate, but sequential
updates of the columns has the potential to give us a better
recovery.

Apart from sparse reconstruction, we can consider a couple
of alternative approaches to model this problem. For speech
signals in general, the variation across frequencies is gradual
for quite a few sections, and we also have a lot of zero rows,
with little to no power in that band. With this information
in mind, we can think of applying rank minimization to the
same problem. This might give a better approximation of
the high frequency features, since the sparsity constraint no
longer drives them to zero. On the flip side, it might smear
out the features across time, since it forces rows to be linear
combinations of each other.

Looking at the problem as a direct linear convolutional
map from the spectrogram to the neural response is another
avenue worth exploring. The advantage it has over matrix
mutiplication is that the spectrogram doesn’t need to be lagged
and has much fewer rows (by a factor of τ ), potentially
resulting in a better reconstruction. This is however limited



by the mathematical intractability of calculating the adjoint of
the matrix convolution operator, which is required in all of the
updates.
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