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Abstract—Research has shown that the insect central complex
(CX) might be responsible for many behaviours related to loco-
motion and vision. One of the experiments conducted revealed
a form of neural compass i.e., neural activity corresponding to
the animal’s orientation, in the CX of the fruit fly’s brain. The
model proposed in this work combines both angular velocity and
angular position measurements to pinpoint the orientation of the
model with respect to the virtual arena. It further shows that
using both of these measures improves tracking as compared to
a single measure. Studying such a model can inspire approaches
towards design of fully autonomous robots. This work tries to
replicate the results of [1]
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I. INTRODUCTION

As is the case with most insect species, the fruit fly has a
central complex (CX) at the center of its brain. It has been
observed that most sensory inputs converge at the CX, and
its activity seems to influence behaviours such as locomotion,
visual pattern memory and visual place learning. This paper
explores the structure of one set of neurons (Ellipsoid body)
in the CX responsible for the neural compass activity and
creates a constrained computational model which imbibes
the CX functionality. The activity of the neural compass
could be underlying more complex locomotory behaviours
and modelling this neural activity could help us identify the
mechanisms behind them.

The most notable of recent experiments are those performed
by Seelig and Jayaraman [2] on restrained flies waking on a ro-
tating air-supported ball in a virtual arena. They demonstrated
that the ellipsoid body (EB) neurons tracked the location of a
landmark through a bump of neural activity. They also showed
that the EB bump is likely driven by positional processes
or motion-based processes with the positional process being
more effective. The evidence for angular motion detection was
provided by experiments in which the stimuli was regular
grating with no landmarks. The fly was still able to orient itself
based on angular motion integration but required an operable
CX to function. Two possible angular motion measures that
were considered were optomotor response and angular velocity
response. Optomotor response is formed by simple correlation
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detectors, but is unsuitable for angular motion integration
because it depends on the frequency of contrasting edges
passing through, and hence dependent on spatial frequency.
Therefore, it would be inconsistent in its response to a given
rotation. Angular velocity response, on the other hand, scales
with the angular velocity independent of spatial frequency and
contrast, and hence is used in this model to drive the angular
motion integration. This model addresses the effectiveness of
combining angular motion integration and positional cues in
tracking orientation and the advantages of having both the
systems.

II. TECHNICAL APPROACH

A. Visual Detection

We use an array of 24 horizontal by 1 vertical ommatidia
per eye in a grid to track the orientation only in the horizontal
space. We assume that this 48 by 1 grid covers the whole
360° field of view. The positional responses are obtained by
summation of the the responses over small regions of the visual
field. In this case, we used the intensities of the field of view
of each ommatidia to determine its response. The 360° field
of view is divided into 16 regions of 22.5° width each for the
positional input calculation.

To obtain the motion detection response, we use the model
based on [3] to construct two Angular Velocity Detecting
Units (AVDUs) (Fig. 1), one preferring progressive and the
other preferring regressive flight. The angular velocity needs
to be processed through differential operations across the
ommatidial grid, and so we make use of the Hassenstein-
Reichardt correlation detector. A pair of HR detectors with
different but known time constants are connected to each
pair of ommatidia, with one preferring forward direction and
one preferring the backward direction. It is to be noted that
the input given to these HR detectors is the response of the
photoreceptors, which are implemented as edge detectors to
find salient features in motion. The angular velocity detector
units sum up the correlation detector responses across both
the eyes giving two final inputs one each for progressive and
regressive directions and whose magnitude scales with the
angular velocity. The progressive and regressive responses also
inhibit each other to allow driving only in one direction.



Fig. 1. Angular Velocity Detector Unit

B. Ring Attractor Network

The ring attractor network in our model is a direct parallel
of the structure present in the ellipsoid body present in the
fly brain ( [2], [4]). The ring attractor is divided into 16
wedges, each having a neuron, with each neuron connected
to the next one to form a ring. The ring attractor neurons
have inhibitory and excitatory connections such that the neural
activity is similar to a bump. The inhibitory connections
are all to all to keep the network stable. The excitatory
connections on the other hand are only to the 4 closest
neurons and the neuron itself. The weights are chosen to
resemble a Gaussian distribution which would ensure a single
bump with a full value half width as measured by [2]. Apart
from the main ring attractor, the EB also has other such
concentric rings and interconnections between the rings. In
our model, these structures are also present as positional input
neurons (receiving landmark input features) and two rings
of rotational neurons. Apart from these, there are two driver
neurons that drive the ring by modulating the strength of the
rotational neurons. These receive motion detection information
in the form of the AVDU outputs. All neurons used are
graded potential Leaky Integrators and all synapses are simple
weights. Implementation-wise, even the rotational neurons are
considered to be modulatory synapse nodes in the network
graph. The complete ring neuron dynamics is as follows.
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The detailed connectivity of this ring attractor network is as
shown in Fig. 2. All 16 positional neurons are connected to the
16 ring neurons in a one-one fashion. Each rotational neuron
ring is that the neurons in it take input from one ring neuron,
have the weight modulated by the corresponding driver input
and give it to the next neuron. The only difference is that
the one ring getting input from one driver tries to drive the
neuronal activities in the ring clockwise while the other tries
to drive it anticlockwise, thus indirectly creating a competition
between the two driver inputs to decide direction of motion.
The two driver neurons give output to all the neurons in their
corresponding rotational ring, thus controlling the strength of
rotation. Within the ring, each neuron gives local excitation to
two of its neighbouring neurons on either side and to itself,
with the weights being gaussian distributed. This ensures that
the shape of the bump is gaussian, which is as observed in
experiments in the fly brain. There are also
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connections between all the neurons in the ring attractor to
provide shaping of the bump and stability to the system when
the bump travels on motion.

The combination of the landmark inputs through positional
neurons and motion inputs through AVDU and rotational
neurons results in an integration of both, and this is the core
idea behind the working of this model. We probe outputs from
the ring neurons and analyse the representation and calculate
the azimuth from it.

C. Calculation of Azimuth

To map the position of the bump with the azimuth of the
object, assume that the beginning of the sector represented by
ring neuron, r0 corresponds to angle 0°in the virtual arena.
We consider unit vectors from the center of the ring to each
of the ring neurons as our basis functions. The position og the
object is obtained by weighting the activity of all ring neurons
with the corresponding ring unit vectors. The azimuth is then
found by calculating the angle between the initial position (the
0°vector in this case) and the weighted vector.

vsum =

imax∑
i=0
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φest = arccos(vsum.vinit)

III. EXPERIMENTS & RESULTS

Our experimental setup assumes a single vertical bar rotat-
ing horizontally with a constant angular velocity. This is the
reason why a horizontal detector array is sufficient to track this
motion. The angular width of the bar is 11.5°. Our model is
built and simulated using the Neurokernel framework defined
in [5]



Fig. 2. Ring attractor circuit. A shows the local excitatory and inhibitory
connections. B shows the neural circuit for rotating the bump of activity
around the ring clockwise and anti-clockwise for a single pair of wedges.
The activity is gated by the driver neuron which multiplies the ring activity
to produce the output to the next wedge. C shows the positional input to
the ring. D shows (left to right) the full structure of the ring; the ring being
seeded by positional activity (green);the clockwise driver neuron (red); the
anti-clockwise driver neuron (blue).

A. Visual Detector Optometric Response

We first tested the trend of the AVDU outputs to ensure
that its response scales with the angular velocity. The input
bar was rotated at different angular velocities and the response
recorded of the AVDU pair was recorded as shown in Fig. 3.
Depending on the direction of motion, we observe that output
of one scales while the other is completely inhibited.

The other component of the optometric response given to the
central complex (CX) are the 16 landmark features calculated
as averages of broad receptive fields.

Fig. 3. AVDU response of both driver neurons with respect to angular
velocity: blue is progressive and orange is regressive

B. Ring Attractor with Landmark Inputs

For seeing the effect of positional landmark inputs on the
representation inside the CX, we set the driver input weights
to be zero, effectively turning off the modulatory rotational
neurons. Fig. 4 depicts the resulting outputs of the ring
neurons, and we see that as the bar passes across the eye,
different neurons get activated and there is a response which is
not quite gaussian, but has a similar rising and falling structure
due to the leaky integrators and excitations from the nearby
neurons involved.

Fig. 4. Ring neuron responses for the system with only positional inputs over
the time of simulation

C. Ring Attractor with Motion Inputs

To analyse the azimuth tracking by motion detection inputs,
we use the modulatory input from the drivers (which in turn
receive input from the AVDUs). The synapse weights from
the positional neurons set to zero and we initialize one ring
attractor neuron to allow the neuronal activity to flow through
the ring. In Fig. 5, we see the motion information being
encoded in the ring, and there is a gaussian like response both
across time in a neuron, and across neurons at a single point in
time (gives rise to the bump). Apart from giving us insight into
the importance of motion detection in neural representation of
objects in the CX, this experiment is also important to tune the
time constant of the ring neurons, since they control how fast
the bump moves on receiving input from the AVDU. Parameter
tuning is done so that one rotation of the stimulus corresponds
to one rotation of the bump in the ring, and so that there is
no boosting in the response amplitudes as the activity travels
through the ring.

D. Ring Attractor with Integration

When we use all 18 (16+2) inputs to the ring attractor
network, we observe a response as shown in Fig. 6. It is
worth noting that although the response is shaped like what we
observe for the case of only AVDU (motion) inputs (and not



Fig. 5. Ring neuron responses for the system with only motion inputs over
the time of simulation

raggedy like for landmark inputs), we have a lingering effect
in response after the stimulus subsides that wasn’t observed
earlier when just the AVDU inputs were used. This is the
effect of the positional landmark inputs that give weight to
the neuronal activities of the ring depending on which region
of the field is activated.

Fig. 6. Ring neuron responses for the integrated system over the time of
simulation

We use the responses obtained to determine the azimuth
estimated by our model using the method mentioned in Section
II.C. The results shown in Fig. 7 compare the estimated
azimuth using only landmarks, only motion and an integration
of both. These are compared with the true azimuth of the
rotating bar, and we observe that the integrated response tracks
the azimuth slope and value much more accurately than the
other two and motion performs the worst.

Fig. 7. Tracked azimuth with the different combinations combined with the
ground truth

IV. DISCUSSION

From our simple example of a moving bar in one direction,
we have shown the feasibility of the proposed model in
explaining a lot of features of fly behaviour when it comes
to visual landmark mapping and path integration. The bump
noted in the experiments in [2] is also seen in our model,
and it responds to landmark features as well as motion. It is
also seen that landmark inputs give poor shaping of the bump
whereas motion inputs decay quickly as soon as motion stops.
It is an integration of these two that incorporates the best of
both features, as is evident from the more accurate azimuth
tracking.

It is worth noting that although we have put inhibitory
connections throughout the ring for stability, the balance is
very delicate and as the rotational neurons simply multiply the
ring activities with the driver input, the problem of boosting
is persistent and will eventually factor in for longer stimuli.
This is one of the limitations of our model. Neurobiologically
speaking, most systems in the brain comprise of spiking
neurons and non-memoryless synapses. This inherent non-
linearity is paramount in providing robustness to the system,
and the fact that this model consists of only graded potentials
and memoryless synapses is its major shortcoming.

A. Future Directions

Although the experiments we have run stand sufficient to
argue for the importance of integration of landmark and motion
inputs for representation in the central complex, the real nature
and extent of how much each of the components contribute has
been unexplored. To get an insight into this, we can consider
providing stimuli that move non-uniformly: for example, a bar
that moves, stops and then moves again or in another direction,
stimuli that move with changing velocity, or even a stimulus
with two bars, where only one is moving.

To make the model more robust, we would need to make
major changes to it to replace the graded potential neurons
with spiking ones. It would also be beneficial to use excitatory
alpha synapses, inhibitory GABAB synapses and dopamine
modulated synapses instead of the simple synapse models we
have used. When tuned correctly with slight modifications in



the network architecture, this is expected to give better results
that more closely resemble the behavior of the fly brain.

ACKNOWLEDGMENT

We would like to thank Prof. Aurel Lazar for teaching us
about the details of canonical motion detection circuits in the
fly brain and for giving us insight into the functioning of
various neuropils in the central complex. We would also like to
thank Mehmet Kerem Turkcan, our T.A. for the course, who
has helped us with all the implementation details, working
and data flow of neurodriver. Lastly, we would like to thank
all the creators of the Neurokernel project for providing us
with a platform to build and simulate circuits in the fly brain.

REFERENCES

[1] Cope AJ, Sabo C, Vasilaki E, Barron AB, Marshall JAR (2017)
A computational model of the integration of landmarks and mo-
tion in the insect central complex. PLOS ONE 12(2): e0172325.
https://doi.org/10.1371/journal.pone.0172325

[2] Seelig JD, Jayaraman V. Neural dynamics for landmark orientation
and angular path integration. Nature. 2015; 521(7551):186191. doi:
10.1038/nature14446 PMID: 25971509

[3] Cope A, Sabo C, Gurney KN, Vasislaki E, Marshall JAR. A Model for
an Angular Velocity-Tuned Motion Detector Accounting for Deviations
in the Corridor-Centering Response of the Bee. PLoS Comput Biol.
2016;. doi: 10.1371/journal.pcbi.1004887 PMID: 27148968

[4] Turner-Evans DB, Jayaraman V, elA Jundi B, Warrant EJ, Byrne
MJ, Khaldy L, et al. The insect central complex. Curr Biol. 2016;
26(11):R4537. doi: 10.1016/j.cub.2016.04.006 PMID: 27269718

[5] Givon, L. E., Lazar, A. A., Yeh, C. H. (2017). Generating Executable
Models of the Drosophila Central Complex. Frontiers in behavioral
neuroscience, 11, 102. doi:10.3389/fnbeh.2017.00102


