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Abstract 
Motivation: By mapping the presence of proteins in different parts of the cell, we can identify                               
malfunctioning cells, enabling us to diagnose genetic defects as well as possible pathogen invasion.                         
This can also aid in dating the protein molecule to find time of synthesis. 
Results: Our simple LeNet based parallel CNN framework shows that this problem can be solved by                             
treating the reference images as separable. We also make an argument for use of batch normalization,                             
data augmentation and weighted loss to improve accuracy for unbalanced classes. 
Availability: The code for the model is available at https://bitbucket.org/praneetvibhu/genomics . The            
model predictions have been submitted to Kaggle with the Kaggle Id adityasinha379. 
Contact: as5624@columbia.edu, pb2735@columbia.edu 
Supplementary information:  www.kaggle.com/c/human-protein-atlas-image-classification 

 

1 Introduction  
In this project, we aim to classify mixed patterns of proteins in             

different organelles of the cell. This problem is pertinent from a genomic            
viewpoint because proteins are both ubiquitous and essential to human          
life, and by mapping the presence of proteins in different parts of the             
cell, we can identify malfunctioning cells, enabling us to diagnose          
genetic defects as well as possible pathogen invasion. This can also help            
us identify, approximately, how long ago the protein blob was          
synthesized. Newly synthesized proteins are found closer to the ER,          
since ribosomes are mostly bound to the surface of the rough ER. 

To accomplish this task, we are given the scans of the nuclei,             
microtubules and endoplasmic reticulum (ER). These three together        
define the entire structure of the cell, as the placement of the remaining             
organelles can be approximately determined using these as references.         
Therefore, these along with the actual protein distribution is sufficient          
for any machine learning algorithm to perform the required         
classification. In other words, the three reference images provide us with           
an outlay of the cell, which is sufficient to predict the localization of all              
the 28 organelles in which the protein could be present. This is            
analogous to the concept of a basis in mathematics, but not quite, since             
here, given the reference images, we can’t come up with an analytical            
solution for the organelle localizations in space. This is our main           
motivation to use a machine learning algorithm based on experience          
(training data) to predict protein organelle localization labels. 

The input data is in the form of sparse images, and for that purpose,               
we use a Convolutional Neural Network (CNN) based architecture.         
CNNs are widely used for image classification as they auto-generate the           
image filters and require minimal preprocessing to extract features. The          

CNN we used is loosely based on the LeNet architecture [1] proposed by             
Yann LeCun, used for character recognition and subsequent modified         
versions  for object classification. 

The main challenge posed by the problem at hand is due to the wide               
variety of cell morphologies for which protein data has been given to us. 

2 Methods 
To predict the protein organization localization labels, we are given,           

for each sample, 3 reference images and one image with protein           
locations. Since the network is complex, for simplicity of training, we           
first mean pool the input images with a 4x4 kernel to get 128x128             
images. 

Thinking along the idea proposed in the likes of [2], we propose a              
parallel architecture of 3 CNNs, with each branch getting one reference           
image and the protein image as input (2 channel input). In each of these              
networks, we use a convolutional, pooling and a batch normalization          
layer. This builds the correlation between the reference image and          
protein image (R+G, B+G, Y+G). Then, we proceed to flatten the           
outputs of the hidden layers to dense fully connected layers, and this is             
where we merge the outputs of the 3 CNNs into one fully connected             
layer, as shown in Fig. 1. We then do some further processing with             
another dense layer to account for relations between the reference          
images themselves and then take the outputs from an affine layer. 

After feedforward operation of the batch, losses are calculated for the            
multi-label classification problem, where we use the cross-entropy        
values at the output to calculate sigmoid cross-entropy loss. For this           
purpose, we convert the target output for training to a one-hot (or            
multi-hot, in this case) tensor, ie. a binary array of 1’s and 0’s. This loss               
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is then backpropagated from all the output nodes with the standard           
backpropagation algorithm. One thing worth noting is that upon         
converting the target output for the batch to a one-hot tensor, we get a              
sparse binary matrix for training. This poses a problem as it results in the              
network’s outputs to be biased towards 0. To correct for this, we modify             
the sigmoid loss by using a weighted loss, with a higher weight if the              
target output is 1, ie. the label is present. 
 

 
Figure 1: Architecture of the CNN 
 

Another challenge posed by the data is the unbalance of classes,            
where labels 0 and 25 are much more frequent than the others in training,              
making the network biased to those labels and leading to overfitting. We            
have partially addressed this issue by introducing a batch normalization          
layer, but we posit that using data augmentation and changing the           
definition of loss to take into account the class unbalance would help            
improve accuracy and detection of other labels. 

Due to RAM limitations, to perform training, the input images have            
been mean pooled to 128x128, leading to smoothening out of data and a             
loss in the possible number of features that could be extracted. This is             
also a big contributor to the low value of accuracy obtained. We suspect             
that using the 512x512, or better yet, the high-res 2048x2048 images           
would yield much better results. 

3 Results 
When we used the sigmoid cross entropy loss, the activations all            

reduced to zero. This was because each image has on an average only 2              
labels, which in one hot encoding would mean 26 zeros and only 2 ones.              
This caused the model to converge towards all zeros, thereby giving no            
meaningful results. 

Using weighted cross entropy loss, seemed to overcome this problem.           
This loss function increased the weight of positive interactions to allow           
the model to converge on them better than rather than dying out. This             
however, resulted in additional spurious labels being added to each          

sample. Therefore, with this neural network, we got an accuracy of 3.3%            
on the kaggle competition. 

Using batch normalization after each convolutional layer managed to          
improve the imbalance in the data by normalizing the results over the            
batch. This increased the accuracy to 5.6%. 
 

Model  Accuracy 

CNN with sigmoid  0% 

CNN with weighted loss  3.33% 

CNN with batch norm and 
weighted loss 

5.6% 

 
 

4 Discussion 
Our idea in this project was to identify the correlation of the protein               

image with each of the bases separately and combining these features to            
get the output. Compared to the basis images, the protein image is            
sparser. If all the four images would have been given to the neural             
network with equal importance, it is likely that the three basis images            
would dominate the result rather than the sparse protein image.          
Therefore, we ran three parallel CNNs each with one basis and the            
protein image and then correlating these three in one fully connected           
layer. We were unable to compare this architecture with existing          
architectures as we did not compensate data imbalance and also as we            
reduced the resolution to allow the system to run the neural network.            
Another major handicap to the system is the lack of data. We could use              
data augmentation, to increase the number of samples which will also           
soothe the data imbalance to a certain extent. 

We have posited that increasing the model complexity would increase           
the accuracy. However, deep CNNs often suffer from the problem of           
vanishing gradients in backpropagation. To solve this problem for         
multi-label image classification, a possible solution is to use         
CNN-RNNs, as in [3]. Use of Long Short Term Memory (LSTM) cells            
and recurrent connections within the network add depth to the network           
while preserving gradients in backpropagation and preventing the        
training from getting stuck. 

It is also possible to consider an ANN architecture with Directed            
Acyclic Graphs (DAG) to address the problem of multi-label         
classification of protein labels, as has been done in [4] for non-sparse            
data. 
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